NEW TRICHOVERROIDS FROM MYROTHECIUM VERRUCARIA: 16-HYDROXYTRICHO-DERMADIENEDIOLS

Sir:

We wish to report the isolation of a new set of epimeric trichothecenes from a large scale fermentation of *Myrothecium verrucaria* (ATCC 24571).¹⁾ These new antibiotics, 16-hydroxytrichodermadienediols A and B (1) are the first reported naturally occurring trichothecenes in which the C-16 methyl group is substituted, although this position has been hydroxylated by chemical²⁾ and microbial³⁾ modifications. Compounds **1a** and **1b** are trichoverroids, a new class of trichothecenes, which have been shown^{1,4)} to lie along the biosynthetic trail from the simple trichothecenes⁵⁾ (*e.g.* T-2 toxin, nivalenol, diacetoxyscirpenol, *etc.*) to the macrocyclic trichothecenes(*e.g.* verrucarins and roridins).^{6,7)}

The processing of a large scale fermentation (757 liters) of *M. verrucaria* was reported elsewhere.¹⁾ From the ethyl acetate extract of the fermentation beer, and by a series of partition and adsorption column chromatographies was obtained a fraction that was rich in trichoverrins^{1,4)} and compounds more polar. The fraction thus obtained was subjected to flash chromatography⁸⁾ (SiO₂, MeOH - EtOAc). Trichoverrins A and B were obtained followed by a fraction which contained 16-hydroxytrichoder-

Position	16-Hydr	oxytrichoder	madienediol A (1a)	16-Hydro	oxytrichodern	nadienediol B (1b)
2	79.3	(3.86 d)	[5.1]	79.3	(3.89 d)	[5.1]
3α	37.0	(2.60 dd)	[7.8, 15.5]	36.9	(2.53 dd)	[7.7, 15.4]
3β		(2.04)			(2.03)	
4	75.0	(5.70 m)		75.6	(5.61 m)	
5	49.4	<u> </u>		49.4	_	
6	41.0			41.0		
7	23.5	(2.04 m)		23.5	(2.03 m)	
8	24.2	(2.04 m)		24.2	(2.03 m)	
9	143.1			143.1		
10	118.8	(~5.70)		118.7	(~5.61)	
11	70.7	(3.70 d)	[5.8]	70.1	(3.63 d)	[5.4]
12	66.0			66.1	_	
13	48.0	(3.02 AB)	[3.9]	48.0	(2.95 AB)	[3.9]
14	6.2	(0.75)		6.1	(0.67)	
15	16.1	(0.96)		16.0	(0.89)	
16	66.1	(4.05)		66.0	(3.97 brs)	
1'	166.0			166.0	—	
2'	118.7	(5.72 d)	[11.2]	118.3	(5.63 d)	[11.4]
3'	143.5	(6.62 dd)	[11.2, 11.2]	143.6	(6.57 dd)	[11.4, 11.4]
4'	128.0	(7.60 dd)	[11.2, 15.5]	128.1	(7.64 dd)	[11.4, 15.5]
5'	142.1	(6.09 dd)	[5.8, 15.5]	141.3	(6.12 dd)	[15.5, 5.8]
6'	76.6	(4.2 brm)		77.3	(4.2 brm)	
7'	70.2			70.3		
8'	18.9	(1.20 d)	[6.3]	17.8	(1.08 d)	[6.4]

Table 1. ¹⁸C and ¹H NMR data for 16-hydroxytrichodermadienediols A and B (1a and 1b)^a.

^a All spectra were taken in deuterio-chloroform solvent. The proton chemical shifts are in parenthesis and $J_{\rm H,H}$ in brackets. Spectra were recorded on a WP-200SY IBM instrument. TMS was used as internal standard (0.0 ppm) and chemical shifts are reported in ppm. ¹³C Chemical shift assignments were done by comparing proton decoupled spectrum with spectra obtained in an INEPT experiment and by comparison with the literature values for trichodermadienediols A and B.¹

Posi- tion	16- trichoc tria	Hydroxy- lermadienedio lecetate A	16-1 1 trichode tria	Hydroxy- ermadienediol .cetate B
2	3.85 d	(5.1)	3.86 d	(5.1)
3α	2.58 dd	(7.7, 15.5)	2.55 dd	(7.8, 15.4)
4	5.62 dd	(7.7, 3.5)	5.64 dd	(7.8, 3.5)
5				
6				
7				
8				
9				
10	5.72 d	(5.0)	5.74 d	(5.2)
11	3.69 d	(5.0)	3.69	(5.2)
12				
13	2.99 AB	8 (4.0)	2.98 AB	(4.0)
14	0.74		0.73	
15	0.96		0.97	
16	4.50		4.50	
1'	_		_	
2'	5.76 d	(11.6)	5.77 d	(11.4)
3'	6.56 dd	(11.6, 11.6)	6.58 dd	(11.4, 11.4)
4'	7.60 dd	(11.6, 15.5)	7.64 dd	(11.4, 15.5)
5'	5.90 dd	(6.1, 15.5)	5.94 dd	(7.1, 15.5)
6′	5.46 dd	(6.1, 6.1)	5.49 dda	(0.5, 3.5, 7.1)
7′	5.09 dq	(6.1, 6.1)	5.11 dq	(3.5, 6.5)
8'	1.20 d	(6.1)	1.22 d	(6.5)
C-CH ₃	2.05		2.05	
C−CH ₃	2.08		2.08	
C-CH ₃	2.16		2.10	

Table 2. ¹H NMR chemical shifts for the acetates of trichodermadienediols A and B^a.

^a Spectra were recorded on WP-200SY IBM instrument in deuterio-chloroform with TMS as internal standard (0.0 ppm). Chemical shifts are reported in ppm and coupling constants in Hz are listed in parenthesis.

madienediols A (1a) and B (1b). These were separated and isolated by HPLC, employing C-18 reversed phase column (50% methanol - water), with 1b eluting before 1a.

The structure assignments for **1a** and **1b** are based on the following data: 16-hydroxytrichodermadienediol A (**1a**): oil $[\alpha]_{D}^{25} - 25 \pm 0.20^{\circ}$ (*c* 0.50, CHCl_s); λ_{max}^{MeOH} 260 nm (log ε 4.25); mass spectrum (chemical ionization, methane gas reagent) *m*/*z* 421.2229 (M+H, calcd. 421.2226). The ¹H and ¹³C NMR spectral data for **1a** and **1b** are presented in Table 1. Table 2 presents the ¹H NMR data for the acetates. The ¹H NMR spectrum of 1a is similar to that for trichodermadienediol A1,4) except that in trichodermadienediol A the C-16 methyl appears as a broad singlet (3H) at δ 1.74 while in 1a this signal is now a two proton broad singlet at δ 4.05. Acetylation (pyridine - Ac₂O) resulted in the formation of a triacetate which suggested the presence of three hydroxyl groups. The broad singlet at δ 4.05 shifts downfield by 0.5 ppm in the acetate. In the ¹³C spectrum of trichodermadienediol A, C-16 appears at δ 23.2,¹⁾ while in the 16-hydroxyl derivative (1a) it appears at δ 66.1 (Table 1). Also a ¹³C NMR INEPT (Insensitive nucleus enhanced polarization transfer) experiment¹⁰⁾ showed that **1a** has five methylene carbons and thirteen methine and methyl carbons. Trichodermadienediol A has four methylene carbons and fourteen methine and methyl carbons. Based on this and relevant proton NMR data, it is evident that the C-16 methyl group has changed to a methylene due to hydroxylation. That the triol belongs to the A series (*i.e.*, L-threo)^{1,4)} was concluded from the ¹H NMR spectrum of the triacetate in which the 7'-H resonates at δ 5.09 as an overlapping doublet of quartets $(J_{7',8'}=J_{6',7'}=6.1)$ Hz).

Data for 16-hydroxytrichodermadienediol B (1b) are as follows: oil $[\alpha]_{D}^{25} - 19.4 \pm 0.3^{\circ}$ (c 1.2, CHCl₃); λ_{max}^{MeOH} 260 nm (log ε 4.27); mass spectrum (chemical ionization, methane gas reagent) m/z421.2231 (M+H, calcd. 421.2226). The ¹H NMR spectrum (Table 1) of 16-hydroxytrichodermadienediol B (1b) is very similar to that of its epimer, 1a. The two epimers may be distinguished by use of the proton spectra of the acetates (Table 2). The D-erythro configuration for 1b was established by the observation of an eight line multiplet $(J_{7',8'}=6.5 \text{ Hz}, J_{6',7'}=3.5 \text{ Hz})$ Hz) at δ 5.11, in the triacetate of **1b**, which is assignable to H-7'.^{1,4)} The corresponding proton in the A epimer resonates at δ 5.09 and exhibits a five line multiplet with $J_{6',7'} = J_{7',8'} = 6.1$ Hz. Furthermore, in the acetates, H-6' appears as a three line doublet of doublets $(J_{5',6'}=J_{6',7'}=6.1)$ Hz) at δ 5.46 for the **1a** epimer, but H-6' appears as an eight line doublet of doublets of doublets $(J_{4',6'}=0.5 \text{ Hz}, J_{5',6'}=7.1 \text{ Hz}, J_{6',7'}=3.5 \text{ Hz})$ at δ 5.49 for the B epimer.

Compounds 1a and 1b were isolated in only small amounts (<1 mg/liter) from this culture of *M. verrucaria*. However, we have examined a

polar fraction of an extract from a culture of M. roridum (strain 514)^e) and find that this organism also produces **1a** and **1b** in addition to several other C-16 hydroxylated congeners. The yields of the C-16 hydroxylated derivatives from this strain of M. roridum appear to be appreciably higher than those observed from M. verrucaria (ATCC 24571). Although we have no biological activity data for **1**, we anticipate that these compounds, like other trichoverroids,^{1,4}) will be substantially less bioactive than the macrocyclic trichothecenes.

Acknowledgment

This investigation was supported by grant number CA-25967, awarded by the National Cancer Institute, DHHS.

BRUCE B. JARVIS* VIVEKANANDA M. VRUDHULA Department of Chemistry, University of Maryland College Park, MD 20742, U.S.A.

(Received November 24, 1982)

References

- JARVIS, B. B.; G. P. STAHLY, G. PAVANASASIVAM, J. O. MIDIWO, T. DESILVA, C. E. HOLMLUND, E. P. MAZZOLA & R. F. GEOGHEGEN, Jr.: Isolation and characterization of the trichoverroids and new roridins and verrucarins. J. Org. Chem. 47: 1117~1124, 1982
- JARVIS, B. B.; G. P. STAHLY, G. PAVANASASIVAM & E. P. MAZZOLA: Antileukemic compounds

derived from the chemical modification of macrocyclic trichothecenes. 1. Derivatives of verrucarin A. J. Med. Chem. 23: 1054~1058, 1980

- PAVANASASIVAM, G.: Trichothecenes: Production, isolation, characterization and their microbial transformation to antileukemic compounds. Ph. D. Thesis, University of Maryland, College Park, 1980
- 4) JARVIS, B. B.; G. PAVANASASIVAM, C. E. HOLMLUND, T. DESILVA, G. P. STAHLY & E. P. MAZZOLA: Biosynthetic intermediates to the macrocyclic trichothecenes. J. Am. Chem. Soc. 103: 472~474, 1981
- ONG, C.W.: Trichothecenes A review. Heterocycles 19: 1685~1717, 1982 and references therein.
- TAMM, CH.: The antibiotic complex of the verrucarins and roridins. Fortschr. Chem. Org. Naturst. 31: 63~117, 1974
- JARVIS, B. B. & E. P. MAZZOLA: Macrocyclic and other novel trichothecenes: Their structure, synthesis, and biological significance. Accounts Chem. Res. 15: 388~395, 1982
- STILL, W. C.; M. KAHN & A. MITRA: Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43: 2923~2925, 1978
- 9) BLOEM, R. J.; T. A. SMITKA, R. H. BUNGE, J. C. FRENCH & E. P. MAZZOLA: Roridin L-2, a new trichothecene. Tetrahedron Lett. 24: 249~252, 1983
- DODDRELL, D. M. & D. T. PEGGY: Assignment of proton-decoupled carbon-13 spectra of complex molecules by using polarization transfer spectroscopy. A superior method to off resonance decoupling. J. Am. Chem. Soc. 102: 6388~6390, 1980